Genetic analysis of violacein biosynthesis by Chromobacterium violaceum.

نویسندگان

  • Regina Vasconcellos Antônio
  • Tânia B Creczynski-Pasa
چکیده

Chromobacterium violaceum presents a distinctive phenotypic characteristic, the production of a deep violet pigment named violacein. Although the physiological function of this pigment is not well understood, the sequencing of the genome of this bacterium has given some insight into the mechanisms and control of violacein production. It was found that erythrose-4-phosphate (E4P), a precursor to aromatic amino acid biosynthesis, is produced by the non-oxidative portion of the hexose monophosphate pathway, since it lacks 6-phosphogluconate dehydrogenase. All genes leading from E4P plus phosphoenolpyruvate to tryptophan are present in the genome. Nevertheless, these genes are not organized in an operon, as in E. coli, indicating that other mechanisms are involved in expression. The sequencing data also indicated the presence and organization of an operon for violacein biosynthesis. Three of the four gene products of this operon presented similarity with nucleotide-dependent monooxygenases and one with a limiting enzyme polyketide synthase. As previously suggested, genes encoding proteins involved in quorum sensing control by N-hexanoyl-homoserine-lactone, an autoinducer signal molecule, are present in the bacterial genome. These data should help guide strategies to increase violacein biosynthesis, a potentially useful molecule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum

In Chromobacteium violaceum, the purple pigment violacein is under positive regulation by the N-acylhomoserine lactone CviI/R quorum sensing system and negative regulation by an uncharacterized putative repressor. In this study we report that the biosynthesis of violacein is negatively controlled by a novel repressor protein, VioS. The violacein operon is regulated negatively by VioS and positi...

متن کامل

Sequence analysis and functional characterization of the violacein biosynthetic pathway from Chromobacterium violaceum.

Violacein is a purple-colored, broad-spectrum antibacterial pigment that has a dimeric structure composed of 5-hydroxyindole, oxindole and 2-pyyrolidone subunits formed by the condensation of two modified tryptophan molecules. The violacein biosynthetic gene cluster from Chromobacterium violaceum was characterized by DNA sequencing, transposon mutagenesis, and chemical analysis of the pathway i...

متن کامل

Chromobacterium violaceum: a review of pharmacological and industiral perspectives.

Violet-pigmented bacteria, which have been described since the end of the 19th century, are occasionally the causative agent of septicemia and sometimes cause fatal infection in human and animals. Bacteria, producing violet colonies due to the production of a nondiffusible pigment violacein, were classified as a redefined genus Chromobacterium. Chromobacterium violaceum is gram-negative, and sa...

متن کامل

Novel tryptophan metabolites, chromoazepinone A, B and C, produced by a blocked mutant of Chromobacterium violaceum, the biosynthetic implications and the biological activity of chromoazepinone A and B.

Chromobacterium violaceum produces tryptophan metabolites, purple pigments of violacein and deoxyviolacein. A blocked mutant was prepared with N-methyl-N'-nitrosoguanidine to gain insights into the biosynthetic mechanisms of the pigments. Five tryptophan metabolites were isolated: three novel compounds, named chromoazepinone A, B and C and two known compounds, chromopyrrolic acid and arcyriarub...

متن کامل

Incorporation of C14-labeled substrates into violacein.

Previous studies on the physiological aspects of violacein biosynthesis (DeMoss and Evans, 1959) suggested that only L-tryptophan would serve as the primary source of carbon for pigment formation by Chromobacterium violaceum. In view of the pigment structure suggested by Ballantine et al. (1958), 5-[3-(5-hydroxyindolyl)]-3-(3-isatinyl)-2-pyrrolone, it seemed advisable to determine the actual so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 3 1  شماره 

صفحات  -

تاریخ انتشار 2004